e e .y e

-
Bate 00
—
-
r

—

/| , Hyperspectral P
f1L /7 mmospheric Correction ~~_
| (185 km @ 125/ 250 m) e
’ “~

Multispectral Images 5 Fo AVIRIS Underflight
BEkm@30m) (| TRWIS /(10 km @ 20 m)

notably grasses that are intended for livestock. It reproduces vegetatively : i | W L=
and spreads rapidly, thus making it resistant to attempts at removal and ‘ ‘ o
control. The body of the leafy spurge plant undergoes considerable pheno-
logical variation in color; most notably is its “yellow phase” where leafy
spurge exhibits a yellow bract, which 1s a leaf-like structure adorning its
flower, that distinguishes i1t from other moist vegetation during that peri-
od. This wide array of colors across the season lends itself to remote
sensing analyses because of its unique spectral and temporal characteris-
tics. - *

Though fundamentally differ-
ent in methodology, remote e
sensing and GIS analysis often |
complement, mirror, and/or :

inform each other. Research-
ers are finding more and more
applications for

intertwining both the data and the
products from GIS and remote sensing.

Examples of common sources of remotely sensed data.

Unlike GIS, remote sensing relies on one very specific source for data input: satel-
- |lite images. Analyzing the reflectance of objects on the earth allows for identifica-
tion and classification of land cover types and other geographic phenomena. Sat-

- fellite sensors enable researchers to use a wider array of wavelengths than the hu-
- Iman eye is capable of seeing while also allowing them to process information over
{large land areas. This technology saves time and resources as well as offers a vis-
ually stimulating way to share results and information, much like GIS. Remote
sensing and GIS operate synergistically, and advancements in one technology of-
ten support the other technology.

The phenological variation in
leafy spurge across a season.
From left to right: early green
growth, “yellow phase”, reddish-
gold late summer beginning of
desiccation.

Classification and Endmembers

Regardless of the spectral resolution of the dataset, each pixel has a unique spec-
tral profile, which 1s the reflectance values of that pixel across each band con-
tained within the data. Using the distinct spectral signature of each pixel, remote
sensing classification groups pixels with similar spectral profiles into land cover

types.

Data

In the past few decades, considerable strides have been made
in the quality and extent of remotely sensed data. Specifical-
ly, the spatial (pixel size) and spectral (wavelength breadth
and detail) resolution of satellite 1magery have improved.

This study uses "hyperspectral

(7"~ Hyperspectui et imagery" captured from the Hy-
O Apeten e e o NASAL i Some classification methods, like those used in this study, match a pixel’s spec-
\1 Observing 1 (EO-1) satellite; tral profile to the spectral signature of a specified landcover type instead of

grouping pixels within an image. The spectral signature to which the pixels are
matched 1s called an endmember. Using endmember classification 1s preferred
when the user 1s both familiar with the scene and interested in 1identifying specif-
ic land cover types. The goal of this classification 1s to produce an 1mage in
which each pixel 1s categorized according
to the presence/absence or relative abun-

dance of the land cover of interest (in this

f
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Jj \l Jgvrvy this sensor returns images with
| |/ A 30-meter pixels that contain re-
f_ﬁ_,' ! / ~_ flectance data for wavelengths
s e s 4o spanning 0.4 um to 2.5 um of
e the electromagnetic spectrum
(divided into 220 bands). To put this detail into perspective,

Landsat TM (a commonly used free data source of the same

r

spatial resolution) covers from 0.45 um to 2.35 pm spread case, leafy spurge). ; o
over only 8 bands. This increase in distinction between f oo
bands provides greater opportunity to i1dentify subtle differ- £ 2000 -

ences between reflectance qualities of various land
cover types.
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An example of an endmember spec-

Example of SAM image tral signature of Leafy Spurge using

preceeding threshold angle hyperspectral data.
selection. M 9
Mixture-Tuned Matched Filtering t

. Ch
we Least Likely Spurge (MTMF) is a statistical algorithm that al- ed P'
Uy, @

lows a researcher to determine relative abun-

(% ‘ b . | . ' _ 1 - Most Likely Spurge dance of an endmember within a pixel (the "matched 1'1'
%Q - , i s W -1\5: filtering") as well as the likelihood of the classification it- II g
e o Sl B 7 . ' 1 self being a "false positive" prediction (the "mixture tun-
‘ " - ing"); thus, MTMF provides two outputs for each pixel (an
"MF Score" and an "infeasibility" score). A unique aspect
of MTMF 1s the fact that, before the analysis takes place,
the data is transformed such that the noise within the 1m-

and the pixel spectral signature vector (starting from the age 1s reduced to the greatest extent possible, and the ex-
coordinate origin) is computed in multidimensional-space; traneous data from the imagery 1s ignored. MTMF, there-
for clarification, the number of bands contained in the da- }fl()fea capltahlzeds 01)1 hlgﬁly detaﬂ? .datasets (e.g. +
taset equals the number of dimensions in which these signa- yperspectral data) without sacrificing computa- , = 07O S
tures are compared. The smaller the spectral angle between BEHEﬁtS and GOOgle tional efficiency. e
the endmember and the pixel, the more likely the endmem-
ber 1s present in the corresponding land area. The researcher
chooses a threshold for a proven angle of difference and
classifies each pixel with an angle that 1s lower than the
threshold value as "present" and all other pixels as "absent".

Spectral Angle Mapper (SAM) 1s a technique that pro-
vides an "endmember presence/absence" classification
for each pixel within an 1image. Mathematically, the an-
gle between the endmember spectral signature vector
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Successfully 1dentifying leafy spurge using SAM and MTMF will allow ranchers
in the western United States to rapidly and consistently monitor the health of their )

H

rangelands. Applying these techniques over multiple seasons will further allow )
. o . g 0 MNF DN
managers to assess the success of their grazing strategies temporally then adjust
them accordingly to improve reduction and control of spurge patches. Both of The y-axis of this plot is the “MF
Spectra these techniques, as well, are not unique to the analysis of leafy spurge; once de- score” (the value from 0 to 1 corresponds to
veloped, ranchers (and land managers working in other ecosystems) can use these percent coverage of the pixel by the
N el land s th . T d b endmember); the x-axis of this plot is the
3 ools to assess any land cover—including other species of plants—as endmembers “infeasibility score”. Pixcls with a higher
: within the analysis. MF score that fall inside of the infeasibility

threshold (e.g. point X) denote a high likeli-
hood of the endmember being present (and
in a high abundance). As the MF score de-

Band 1 creases, the infeasibility threshold expands

Google s wonemaese - LIS StUAY attempts (1) to refine the MTMF pro- | . .
: cess for classifvine spurce on free. publicall (e.g. point Y). Pixels that fall outside of the
An example of SAM visually represented Earth Engine ] e : y g p .g ree, p y infoasibility throshold, at any ME value
in two dimensions. e e e o mamn ommmEns - - available data using existing proprietary software
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TR and (2) to integrate both SAM and MTMF into A e
o Google Earth Engine (an online geospatial plat- "
R 9 - form that has ingested the complete history of
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